
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Load Balancing via Parallel
Hypergraph Partitioners

Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson
Sandia National Laboratories, Albuquerque

kddevin@sandia.gov

Umit Çatalyürek
Ohio State University, Columbus

Rob Bisseling
Utrecht University, The Netherlands

Graph Partitioning vs.
Hypergraph Partitioning

Assign equal vertex weight while
minimizing hyperedge cut weight.

Assign equal vertex weight while
minimizing edge cut weight.

Hyperedge cuts accurately
measure communication volume.

Edge cuts approximate
communication volume.

Hyperedges: two or more vertices.Edges: two vertices.

Vertices: computation.Vertices: computation.

Hypergraph Partitioning
Alpert, Kahng, Hauck, Borriello, Çatalyürek,

Aykanat, Karypis, et al.

Graph Partitioning
Kernighan, Lin, Schweikert, Fiduccia,

Mattheyes, Simon, Hendrickson, Leland,
Kumar, Karypis, et al.

A A

Impact of
Hypergraph Partitioning

• Greater expressiveness ⇒ Greater applicability.
– Structurally non-symmetric systems

• circuits, biology
– Rectangular systems

• linear programming, least-squares methods
– Non-homogeneous, highly connected topologies

• circuits, nanotechnology, homeland security databases
• Accurate communication model ⇒

lower application communication costs.

• Several serial hypergraph partitioners available.
– hMETIS (Karypis) – PaToH (Çatalyürek)
– Mondriaan (Bisseling)

• Parallel partitioners needed for large, dynamic problems.
– Zoltan PHG (Sandia) – Parkway (Trifunovic)

1 2

3

45

 6

Matrix Representation
• View hypergraph as matrix (Çatalyürek & Aykanat)

– Vertices == columns
– Edges == rows

• Communication volume associated with edge e:
 CVe = (# processors in edge e) - 1

• Total communication volume =

x

x**y

x****y

x***=y

x**y

x***y

!

CV
e

e

"

Data Layout
• 2D data layout within hypergraph partitioner.

– Does not affect the layout returned to the application.
– Vertex/hyperedge broadcasts to only sqrt(P) processors.
– Maintain scalable memory usage.

• No “ghosting” of off-processor neighbor info.
• Differs from parallel graph partitioners and Parkway.

– Design allows comparison of
1D and 2D distributions.

Recursive Bisection
• Recursive bisection approach:

– Partition data into two sets.
– Recursively subdivide each set

into two sets.
– Only minor modifications

needed to allow P ≠ 2n.
• Two implementation options:

– Split only the data into two
sets; use all processors to
compute each branch.

– Split both the data and
processors into two sets;
solve branches in parallel.

… …

Coarse HG

Initial HG Final Partition

Coarse Partition

Contraction Re
fin

em
en

t

Coarse
Partitioning

Multilevel Scheme
• Multilevel hypergraph partitioning (Çatalyürek, Karypis)

– Analogous to multilevel graph partitioning
(Bui&Jones, Hendrickson&Leland, Karypis&Kumar).

– Contraction: reduce HG to smaller representative HG.
– Coarse partitioning: assign coarse vertices to partitions.
– Refinement: improve balance and cuts at each level.

Multilevel Partitioning V-cycle

Contraction
•Greedy maximal weight matching algorithms.
•Heavy connectivity matching (Çatalyürek)
Inner-product matching (Bisseling)
– Match columns (vertices) with greatest inner

product ⇒ greatest similarity in connectivity.

Parallel Matching in 2D Data Layout
• On each processor:

– Broadcast subset of vertices (“candidates”)
along processor row.

– Compute (partial) inner products of
received candidates with local vertices.

– Accrue inner products in processor column.
– Identify best local matches for received

candidates.
– Send best matches to candidates’ owners.
– Select best global match for each owned

candidate.
– Send “match accepted” messages to

processors owning matched vertices.
• Repeat until all unmatched vertices

have been sent as candidates.

Coarse Partitioning
•Gather coarsest hypergraph to
each processor.
– Gather edges to each processor in

column.
– Gather vertices to each processor in

row.
•Compute several different coarse
partitions on each processor.
• Select best local partition.
•Compute best over all processors.

Refinement
• For each level in V-cycle:

– Project coarse partition to finer
hypergraph.

– Use local optimization (KL/FM) to
improve balance and reduce cuts.
• Compute “root” processor in each

processor column: processor with most
nonzeros.
• Root processor computes moves for

vertices in processor column.
• All column processors provide cut

information; receive move information.

Graph vs. Hypergraph Partitioning
• Cage12: Cage model of DNA electrophoresis

(van Heukelum in U. FL. Matrix Collection)
– 130,228 rows & cols; 2,032,536 nonzeros.
– 64 partitions.

• Hypergraph partitioning reduced communication
volume by 8-17%.
• Zoltan PHG comparable to PaToH.

9.3184,86132.0183,027Parallel HG (Zoltan PHG)

NANA32.7182,345Serial HG (PaToH)

2.2222,3161.5198,362Graph (METIS/ParMETIS)

Time
(secs.)

Comm.
Volume

Time
(secs.)

Comm.
Volume

Partitioning Method

64 ProcessorsOne Processor

TimeCVTimeCVTimeCVTimeCVMatrix (size; # nz)

1611.62M2641.61M4811.61M8321.60MCage14
(1.5M x 1.5M; 27M)

30149.0K40148.0K64148.1K137147.3KVoting175 Markov
(1.1M x 1.1M; 6.7M)

73125.4M157225.3M634425.3M------Random
(1M x 1M; 20M)

7.230,7225.930,3069.530,03719.729,991IBM18 circuit
(202K x 211K; 820K)

4.385,8635.085,72611.886,07233.986,204PolymerDFT
(46K x 46K; 2.7M)

P = 64P = 16P = 4P = 164 partitions on:

Zoltan-PHG
Performance Results

• As number of processors increases:
– Communication volume (CV) does not degrade.
– Execution time is reduced (but speedup not yet perfect).

The Zoltan Toolkit

Unstructured Communication

A F
C

A B C
0 1 0

B
E

I
G

D E F
2 1 0

H
D

G H I
1 2 1

Distributed Data
Directories

Data Migration

Matrix Ordering Dynamic Memory
Debugging 

Dynamic Load
Balancing

Data services for unstructured, dynamic and/or adaptive computations.
http://www.cs.sandia.gov/Zoltan

Future Work
• Increase speed while maintaining quality.

– Heuristics for more local, less expensive matching
– Parallel coarse partitioning
– K-way refinement

• More evaluation of current design.
– 1D vs. 2D data layouts
– During recursive bisection, split only data or both

processors and data
• Incremental partitioning for dynamic applications.

– Minimize data migration.
•Watch for release in Zoltan later this year!

